

Introduction to Sovereign Debt & Restructuring

Kevin Chen

Question: You have 15 balls that are randomly distributed in 10 boxes.

What is the **expected number of empty boxes** once you distribute the 15 balls?

Brain Teaser

Solution: Brain Teaser

Answer: The expected number of empty boxes is ~2.06.

As such, given linearity of expectations (X is the expected number of empty boxes):

E

Let us denote x_i for box *i* as indicator variables such that $x_i = 1$ if box *i* is empty and $x_i = 0$ if box *i* has balls within. Thus:

 $X = x_1 + x_2 + \dots + x_{10}$

$$F(X) = E(x_1) + E(x_2) + \dots + E(x_{10})$$

For any given x_i , we must have $E(x_i) = \left(1 - \frac{1}{10}\right)^{15}$

Thus, the expected number of empty boxes is $10 \cdot \frac{9^{15}}{10^{15}} = \sim 2.06$.

Agenda

Debt & Covenants
Bankruptcy & Restructuring
Credit Derivatives

Case Studies

Debt & Covenants

Secured vs. Unsecured Debt

Debt with a collateral interested is called secured debt.

QUANTITATIVE

	Secured	
•	Backed by collateral	• No colla
•	Based on quality of collateral and creditworthiness	• Based or
•	Often floating rate (SOFR + spread)	• Often fix
•	Mandatory Amortization	• Can be b
•	Lower interest rate	• Figher in
•	Often banks are lenders	

Unsecured

iteral

nly on creditworthiness of borrower

xed rate

oullet payment or paid in kind

nterest rate

Covenants

Covenants:

- * Promises agreed to by the borrower
- If they do not abide, lender can place borrower in default
- Meant to protect the lender

In theory, the more covenants, the lower the interest rate because the lender has less risk:

✤ Maintenance vs. Incurrence

UANTITATIVE INANCE OCIETY

Maintenance Covenants

Definition: Tested regularly, and the borrower must be compliant.

Examples:

- Debt/EBITDA ratio below certain number
- Interest Coverage ratio higher than certain number

If they are not in compliance, the firm can be placed in technical default.

Incurrence Covenants

Definition: Only comes into effect if the borrower is trying to do a specific action.

Examples:

- ✤ If the borrower wants to take on new debt, debt/EBITDA must be below 5.0x after taking on the new debt.
 - This does not mean they cannot have a debt/EBITDA of 6.0x.
 - The firm must must be below 5.0x after taking on new debt.

Covenant Breach / Distress

- The borrower is placed in technical default.
 - * Depending on credit documents, lender can accelerate default if there is a provision allowing this
 - * In general, lenders will look to work with borrower to cure technical default as acceleration is rarely the best method
 - * The lenders are focused on preserving their return

Consequences:

UANTITATIVE

DCIET

- Rating Downgrade
- Equity trades close to 0, debt trading at discount
- Poor Financials (e.g., Cash Flow, AP, Margins, Revenue, etc.)

Bankruptcy & Restructuring

Sovereign Debt: FX vs. Local Debt

FX Debt:

UANTITATIVE

DCIET

- * Non-local currency debt usually cheaper by reducing currency risk.
- Helps sovereigns pay for imports or mitigate CA imbalances.

However, when borrowing in FX, sovereigns have to pay in FX:

- ★ <u>Method I:</u> Exports sell goods to the rest of the world in dollars.
- ✤ <u>Method II:</u> Use FX Reserves Central banks can accumulate reserves of other currencies to meet debt payments.
- ✤ <u>Method III</u>: **Bailout** Approach the IMF for a bailout package.

Local Debt:

Debt denominated in local currency.

Bankrupt Sovereigns

A bankrupt sovereign is one that has run out of FX to meet obligations:

Balance of Payments Crisis:

A country imports more than it exports, running down its FX reserves to pay for imports.

Banking Crisis:

* If savers save in FX, rather than local currency, a run on the banks can cripple FX reserves.

Currency Crisis:

* If a country pegs its currency, it intervene with FX to support the peg.

Financial Variables

Example: A bond at \$100 maturing in 5 years pays a 5% interest rate * <u>Principal Haircut:</u> reduces the face value of the obligation ✤ I owe you \$80 instead of \$100 now

- Coupon Haircut: reduces the interest rate on the obligation ✤ I pay you 3% interest instead of 5% interest
- * <u>Maturity Extension</u>: extends the payment term of the obligation ✤ I owe you this money in 10 years instead of 5 years

Legal Variables

There are several legal terms to consider:

- Collective Action Clause Specifies voting thresholds for a deal to be approved, preventing investors from "holding out."
- Jurisdiction Covers which legal jurisdiction governs the bonds (typically New York / London or "local").
- * Exit Consents Legal provisions that strip bondholders who refuse to accept an offer of legal protections, incentivizing cooperation.

Credit Derivatives

QUANTITATIV Finance Society

Credit Default Swap (CDS)

Form of credit derivative that hedges an investor's exposure to credit risk in a bond

Two Parties:

- Protection Seller: Sells the swap, takes a bullish view on credit risk
- Protection Buyer: Buys the swap, takes a bearish view on credit risk

Mechanics:

- * Buyer pays the basis annualized figure that is usually paid quarterly
- This spread is usually 100-bps or 500-bps (difference between fixed and market spread is settled upfront)

sh view on credit risk rish view on credit risk

is **usually paid quarterly Ifference** between fixed and

QUANTITATIVE VANCE

CDS Transaction

Cash Settlement in Case of Default

Protection Seller

Protection Seller

CDS Triggers

Hard credit events:

- Automatically triggers CDS contracts.
- E.g., bankruptcy, failure to pay, obligation acceleration and default.

Soft credit events:

- * No automatic trigger of CDS.
- ✤ E.g., "restructurings."

Restructuring credit events must be binding on all holders, leaving voluntary restructurings as a gray area under the law: ***** Basel Laws and a lack of Chapter 11 rules in Europe leaves restructurings relevant.

Physical vs. Cash Settlement

Physically Settled: Involves a transfer of the physical, underlying good (think: oil futures)

Cash Settled:

Involves a transfer of cash between both parties (think: Treasury futures)

Prior to the mid-2000s, CDS contracts were physically settled derivatives: The CDS buyer would have to enter the market and physically purchase the underlying bond and transfer it to the CDS seller

- The rapid growth of CDS markets as independent of the physical cash bond market necessitated a shift towards cash settlement to avoid market imbalances (e.g., a short squeeze).

CDS Auctions

Purpose:

- * Two-staged auction designed to mimic a physically settled contract
- Traders submit physical settlement requests (PSRs)
 - Long Protection: PSR to sell
 - Short Protection: PSR to buy

Key Quantities:

- 1. Initial Market Midpoint (IMM)
- 2. Net Open Interest (NOI)
- 3. Adjustment Amounts

QUANTITATIV Finance Society

Stage I

Characteristics:

- Traders submit prices to buy / sell defaulted security
- **Determines** the **IMM** places bounds on the final price

Adjustment Amounts:

- Penalties levied for being on the "wrong" side of the market
- Adjustment Amount = (Quoted Price IMM) x 0.01 x Quotation Amount

ecurity e final price

de of the market x 0.01 x Quotation Amount

QUANTITATIVE FINANCE SOCIETY

Example: CIT Auction

Dealer	Bid	Offer		Bid	Offer	Crossing
Bank of America Securities LLC	69.25	71.25		70.25	68.5	Y
Barclays Bank PLC	67	69		70	69	Y
BNP Paribas	69	71		70	70	Y
Citigroup Global Markets Inc.	68.75	70.75	_	70	70.75	Ν
Credit Suisse International	70	72		69.75	71	Ν
Deustche Bank AG	70.25	72.25		69.25	71	Ν
Goldman Sachs & Co.	66.5	68.5		69	71	Ν
HSBC Bank USA, National Association	69	71		69	71.25	Ν
J.P. Morgan Securities, Inc.	69.75	71.75		69	71.75	N
Morgan Stanley & Co. Incorporated	68	70		68.75	72	Ν
Nomura International PLC	70	72		68	72	Ν
The Royal Bank of Scotland PLC	69	71		67	72	Ν
UBS Securities	70	72		66.5	72.25	Ν

IMM: 70.25

Used to compute IMM QUANTITATIV Finance Society

Stage II

Details:

- Dealers submit limit orders to fill the Net-Open Interest
- Auction Final Price: price of the limit order that fills the NOI:
 - Final Price \leq IMM + Cap Amount (if NOI is to sell)
 - ✤ Final Price ≥ IMM Cap Amount (if NOI is to buy)

Insufficient Limit Orders:

- Final Price = 0 if NOI is to "sell"
- Final Price = 100 if NOI is to "buy"

pen Interest that **fills** the **NOI**: I is to sell) I is to buy)

CDS Trading

CDS Basis Trading:

CDS Basis = CDS Rate – Spread

- * If the CDS basis spread is lower than the bond spread, one can make a negative basis trade:
 - * Buy the bond and CDS receive the delta in spread without risk.

Other Trading Structures:

- Can be utilized as a leveraged viewpoint on credit risk
- Traders employ CDS in correlation trades (via portfolios of CDS)

Case Studies

Fannie Mae / Freddie Mac (2008)
Greece (2012)

Fannie Mae / Freddie Mac (2008)

CDS Trigger:

- *** Bankruptcy** served as the **CDS** trigger, and the firms were moved into conservatorship.
- * This implies government support.

Auction:

- CDS auctions are held separately for senior and subordinated debts.
- ✤ Both the senior and the subordinated paper would likely be made whole by the government.
- Fannie and Freddie's subordinated debt settled higher than its senior debt, despite both having the same conservatorship arrangement.

complicated things.

Subordinate
Fannie Mae:Final Price: 99.9
Freddie Mac:Final Price: 98

Senior obligations had small issues that made finding the cheapest-todeliver bond difficult; there were very few subordinate bonds. **Subordinate** bonds had **higher coupons** – attractive to investors.

The size and novelty of this auction alongside varied CDS ownership also

Causes:

- **Fiscal Imbalances** were wide throughout the 2000s.
- Entry into the Eurozone removed Greece's monetary sovereignty.
- The effects of the **2008 Financial Crisis** exacerbated the crisis.
- Greece faced a de-facto, 'classic' FX debt crisis.

Greece (2012)

Domestic Political Volatility:

- Greece finally exited its last IMF program in 2018

Harsh Treatment of Creditors/Bondholders:

Retrofitted Collective Action Clauses:

- Largely a function of the Greek domestic law system
- Power of holdout creditors has greatly increased since this

✤ Far-left SYRIZA won elections in 2015 – preceded in a standoff with the IMF

Only Iraq, Argentina, and Serbia achieved greater debt relief

Greece (2012 – cont.)

Note: Coupon plus principal repayments, at face value, in € billion. *Sources*: Hellenic Republic (Ministry of Finance and Public Debt Management Agency), Bloomberg, and authors' calculations.

Figure 7: Change in composition of Greek sovereign debt

February 2012: Before debt exchange

December 2012: After debt exchange and buyback

Links

Coffee Chat Link

Get in Touch

Feel free to reach out to us over Facebook or email if you have any questions

www.quantfsnyu.com quantfsnyu@gmail.com

- President Kevin Chen (kevinchen@stern.nyu.edu) ${\color{black}\bullet}$
- Vice-President Mariah Rui (<u>mariah.rui@stern.nyu.edu</u>)
- Co-Head of All Portfolios Daniel Abraham (<u>dga2751@stern.nyu.edu</u>)
- Co-Head of All Portfolios Edward Yudolevich (edy3312@stern.nyu.edu) \bullet