

<u>Ceche Derivatives 101</u>

random variables.

Brain Teaser

Question: Let X, Y ~ N(0,1) be i.i.d.

What is the **probability** that X > 3Y?

0.

We can take the expectation of Z such that E[Z] =E[X] - 3E[Y] = 0 by linearity of expectations.

Solution: Brain Teaser

Answer: The probability is 50%.

Let us denote Z = X - 3Y where we want to find Z >

Since E[Z] = E[X] = E[Y] are normally distributed around 0, we must have $Z \sim N(0, \sigma) \rightarrow P(X > 3Y) = \frac{1}{2}$

Agenda

Overview & Intuition
The Two-Stage Auction
CDS Basis
ETFs & Correlation Trading
Other Credit Derivatives

Overview & Intuition

Credit Default Swap (CDS)

Form of credit derivative that **hedges** an **investor's exposure** to credit risk in a bond

Two Parties:

- * <u>Protection Seller</u>: Sells the swap, takes a bullish view on credit risk
- Protection Buyer: Buys the swap, takes a bearish view on credit risk

Mechanics:

- * Buyer pays the basis annualized figure that is usually paid quarterly
- This spread is usually 100-bps or 500-bps (difference between fixed and market spread is settled upfront)

CDS Use Cases

Use Cases:

*****Reduce (or increase):

- Credit Exposure
- Credit Concentration (e.g., company, industry, country, etc.)

Take short positions in defaultable bonds (easier than in cash markets)

Change distribution of credit quality

Regulatory arbitrage:

Seek > Regulated Leverage

QUANTITATIVE IANCE

CDS Transaction

Cash Settlement in Case of Default

Protection Seller

Protection Seller

QUANTITATIV Finance Society

Key Terms

Terms:

Reference Entity: company / country on which the contract is written

Reference Obligation: identifies relevant seniority of claims (i.e., point in the capital structure

Credit Events: Describes what events can trigger default

*Obligation Category: Describes what types of obligation can trigger default

*<u>Deliverable Obligations</u>: Describes what **obligations** can be **delivered** to the **seller** in settlement

CDS Triggers

Hard credit events:

- * Automatically triggers CDS contracts.
- * E.g., bankruptcy, failure to pay, obligation acceleration and default.

Soft credit events: *No automatic trigger of CDS. ✤E.g., "restructurings."

Restructuring credit events must be binding on all holders, leaving voluntary restructurings as a gray area under the law: *Basel Laws and a lack of Chapter 11 rules in Europe leaves restructurings relevant.

QUANTITATIV Finance Society

Physical vs. Cash Settlement

<u>Physically Settled:</u>
Involves a transfer of the physical, underlying good (think: oil futures)

Cash Settled:

Involves a transfer of cash between both parties (think: Treasury futures)

Prior to the mid-2000s, CDS contracts were physically settled derivatives:
The CDS buyer would have to enter the market and physically purchase the underlying bond and transfer it to the CDS seller
The rapid growth of CDS markets as independent of the physical cash bond market necessitated a shift towards cash settlement to avoid market imbalances (e.g., a short squeeze).

The Two-Stage Auction

QUANTITATIV FINANCE Society

CDS Auctions

Purpose:

- *Two-staged auction designed to mimic a physically settled contract
- Traders submit physical settlement requests (PSRs)
 - Long Protection: PSR to sell
 - Short Protection: PSR to buy

Key Quantities:

1.Initial Market Midpoint (IMM)2.Net Open Interest (NOI)3.Adjustment Amounts

sically settled contract Rs)

QUANTITATIV Finance Society

Stage I

Characteristics:

Traders submit prices to buy / sell defaulted security
Determines the IMM – places bounds on the final price

Adjustment Amounts:

*Penalties levied for being on the "wrong" side of the market

Adjustment Amount = (Quoted Price – IMM) x 0.01 x Quotation Amount

e of the market x 0.01 x Quotation Amount

QUANTITATIVE FINANCE SOCIETY

Example: CIT Auction

Dealer	Bid	Offer
Bank of America Securities LLC	69.25	71.25
Barclays Bank PLC	67	69
BNP Paribas	69	71
Citigroup Global Markets Inc.	68.75	70.75
Credit Suisse International	70	72
Deustche Bank AG	70.25	72.25
Goldman Sachs & Co.	66.5	68.5
HSBC Bank USA, National Association	69	71
J.P. Morgan Securities, Inc.	69.75	71.75
Morgan Stanley & Co. Incorporated	68	70
Nomura International PLC	70	72
The Royal Bank of Scotland PLC	69	71
UBS Securities	70	72

IMM: 70.25

Used to compute IMM QUANTITATIV Finance Society

Stage II

Details:

*Dealers submit limit orders to fill the Net-Open Interest

Auction Final Price: price of the limit order that fills the NOI:

Final Price \leq IMM + Cap Amount (if NOI is to sell)

✤ Final Price ≥ IMM – Cap Amount (if NOI is to buy)

Insufficient Limit Orders: ◆Final Price = 0 if NOI is to "sell" ◆Final Price = 100 if NOI is to "buy" en Interest at **fills** the **NOI**: is to sell) is to buy)

CDS Basis

CDS Trading

CDS Basis Trading:

CDS Basis = CDS Rate – Spread

*If the CDS basis spread is lower than the bond spread, one can make a negative basis trade:

***** Buy the bond and CDS – receive the delta in spread without risk.

Other Trading Structures:

Can be utilized as a leveraged viewpoint on credit risk Traders employ CDS in correlation trades (via portfolios of CDS)

Synthetic CDS

Defaultable Floating Rate Note (Short)

Takeaway: A long CDS position can be replicated by buying a Default-Free Floating Rate Note and shorting a Defaultable Floating Rate Note

Dealer Perspective

Transaction	Cash	Flow	Default Event	Cash Flow at Maturity
	Now	Period	Payment	
Write Default Protection	0	d	-100(1-R)	0
Borrow Bond & Sell	+100	-(L+S)	-100R	-100
Invest Proceeds	-100	r	+100	+100
Total	0	d - [S + (L - r)]	0	0

R: Recovery Rate; L: SOFR; S: Floating Rate Spread; r = Repo Rate; d: CDS Rate

 $CDS Rate (Ask) = Spread + (SOFR - Repo) \rightarrow d = S + (L - r)$

Investor Perspective

Transaction	Cash	Flow	Default Event	Cash Flow at Maturity
	Now	Period	Payment	
Buy Default Protection	0	-d	+100(1-R)	0
Buy Bond	-100	+(L+S)	+100R	+100
Finance Bonds	+100	-r _B	-100	-100
Total	0	$-d + [S + (L - r_B)]$	0	0

R: Recovery Rate; L: SOFR; S: Floating Rate Spread; r_B : Financing Rate; d: CDS Rate

CDS Rate (Bid) = Spread – (Financing – SOFR) $\rightarrow d = S - (r_B - L)$

The Full Picture

$$CDS = + \begin{cases} L - repo \\ L - r_B \end{cases} \rightarrow basis = CDS$$

Positive Basis

- High demand for credit protection
- Difficult / expensive to short **bonds** (repo rate low)
- Funding below par
- Cheapest-to-deliver option

$$S = \begin{cases} L - repo: ask \\ L - r_B: bid \end{cases}$$

Negative Basis Large supply of credit protection Financing above SOFR Counterparty risk

ETFs & Correlation Trading

CDS ETFs

CDS Index: Portfolio of single-name CDS *Protection seller provides protection (and receives premium) on a portfolio of names

Important: Major indices are centrally cleared

Dynamics:

*Equal notional weightings for all credits *Reference entities cannot be added and will only be removed upon the triggering of a credit event

CDS ETFs (cont.)

Importance of CDS ETFs

CDS ETFs provide investors with the ability to:
Take long and short positions in credit
Take credit exposure on either a leveraged or unleveraged basis

Index products provide: Ability to customize exposure (e.g., geographically, industry-based, credit quality)
Ability to hedge single name credit against movements in the market spread
*High liquidity

QUANTITATIVE

CDS ETFs & Correlation (cont.)

Overview:

- * With a fixed recovery rate, the distribution of portfolio losses is the distribution of the number of defaults
- * Equity tranche loss is concave in portfolio loss expected loss on tranches decreases with variance of portfolio loss; senior tranche is convex in portfolio loss

Other Credit Derivatives

Credit-Linked Notes

Overview:

- A bond where the payment to the buyer is reduced in the event of default of the reference entity
- * Buyer is selling credit protection where he/she puts up compensation for default in advance

Step-Up Bond

Overview:

- * The coupon paid is increased if the credit rating of the issuer falls to specified threshold
- The European Telecoms industry has around 65 issues with over Euro 100 billion outstanding
- Deutsche Bank and France Telecom are the largest issuers

Total-Rate-of-Return Swaps

Overview:

* Pays the difference between between total mark-to-market rate of return on credit risky bond and (e.g.) government bond

Credit Derivatives Product Mix

Source: British Bankers Association (BBA)

BBA Data to 2004:

2005-06: Index contracts grew rapidly

Links

Coffee Chat Link

Get in Touch

Feel free to reach out to us over Facebook or email if you have any questions

www.quantfsnyu.com quantfsnyu@gmail.com

•President – Kevin Chen (kevinchen@stern.nyu.edu) •Vice-President – Mariah Rui (mariah.rui@stern.nyu.edu) •Co-Head of All Portfolios – Daniel Abraham (<u>dga2751@stern.nyu.edu</u>) •Co-Head of All Portfolios – Edward Yudolevich (<u>edy3312@stern.nyu.edu</u>)